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Lie ± Nambu and Beyond

Marek Czachor1

Received August 7, 1998

Linear quantum mechanics can be regarded as a particular example of a nonlinear
Nambu-type theory. Some elements of this approach are presented.

1. INTRODUCTION

At the moment there is no single experimental result suggesting that
states of a quantum system can evolve in a fundamentally nonlinear way.

On the other hand, all impossibility theorems stating that such a nonlinearity

is in principle impossible have not survived a detailed analysis. It is therefore

possible that the status of quantum linearity is similar to that of geometrical

linearity before the invention of general relativity.

The multiple-bracket dynamics described in this paper arose from a
search for a consistent embedding of linear quantum mechanics into a more

general theory where the assumption of linearity could be dropped. The

formalism is essentially based on density matrices and not on wave functions.

A density matrix plays here the role of a fundamental field and should not

be regarded as a mixture of classical and quantum probabilities. A departure

point for the discussed generalization is the observation that density matrices
of ordinary quantum mechanics satisfy an equation of a Lie±Nambu type.

The layout of the paper is as follows. Section 2 relates the work to the

earlier efforts by Nambu (1973) and Biaøynicki-Birula and Morrison (1991).

Some formal tools are introduced in Section 3±5, In Section 6 a (2n 1 1)-

bracket is introduced and some of its general properties are proved. The

bracket differs from the so-called generalized Nambu, generalized Poisson,
or generalized Nambu±Poisson brackets discussed in the literature (Bayen
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and Flato, 1975; Cohen, 1975; Takhtajan, 1994; Gautheron, 1996; Chatterjee

and Takhtajan, 1996; de AzcaÂrraga et al., 1996; Ditto and Flato, 1997; IbaÂnez

et al., 1997; Ditto et al., 1997; Kanatchikov, 1997). The particular case of a 3-
bracket dynamics is discussed in Section 7, where the notion of a Lie±Nambu

duality is introduced and properties of solutions of the 3-bracket equations

are discussed. The 5-bracket dynamics is briefly discussed in Section 8.

Section 9 is devoted to the question of N-particle extensions of a nonlinear

Lie±Poisson dynamics. The notion of complete separability is discussed and

examples of completely separable equations are given. The results of this
section contradict the popular belief that all nonlinear extensions of quantum

mechanics lead to faster-than-light phenomena. Also the question of complete

positivity of solutions is briefly discussed in this section. Section 10 is devoted

to the problem of separability of the dual Poisson dynamics and it is shown

that a surprising nonlocal phenomenon occurs. In Section 11 a possible link

between our formalism and the problem of quantization of classical Nambu
dynamics is discussed.

2. LIE± POISSON BRACKET AS A LIE± NAMBU BRACKET

The origin of this work goes back to two papers where, in completely

different contexts, a notion of a triple bracket was introduced.

2.1. Nambu (1973): Euler Equations

The Euler equations for a rotating rigid body are

Jk 5 e kbc(Jb /Ib)Jc (1)

5 Ja e a
bc

- Jk

- Jb

- H

- Jc

5 {Jk , H } (2)

5 e abc
- Jk

- Ja

- H

- Jb

- S

- Jc

5 {Jk , H, S} (3)

Here J is the angular momentum, Ik the component of the moment of inertia,

H 5 J 2
1 /2I1 1 J 2

2 /2I2 1 J 2
3 /2I3 is the rotational energy, and S 5 1±2 J2. The

totally antisymmetric tensor e abc can be regarded either as a 3-dimensional

volume form or as structure constants of so(3). The Lie algebra so(3) enters

the equations also via S since J2 is a second-order Casimir invariant of this

algebra. The form (2) defines a Poisson bracket. The triple bracket defined
by (3) is nowadays called the Nambu bracket and was introduced in

Nambu (1973).

The Poisson bracket (2) is a particular case of the so-called Lie±Poisson

bracket, which differs from (2) by the presence of structure constants ca
bc of
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some Lie algebra instead of e a
bc characteristic of so(3). It is natural to think

of the Nambu bracket as a particular case of

{A, B, S} 5 cabc
- A

- xa

- B

- xb

- S

- xc

(4)

where S 5 1±2 gabxaxb is a second-order Casimir invariant of an appropriate Lie

algebra. Such brackets could be called Lie±Nambu brackets and are quite

natural in the context of generalizations of a Lie±Poisson dynamics. It is

surprising that this kind of generalization of classical Hamiltonian dynamics

has not been considered so far in the theory of classical dynamical systems

(Ratiu, n.d.). One of the reasons seems to be the fact that for general Lie
algebras the bracket does not satisfy the so-called fundamental identity (Chat-

terjee and Takhtajan, 1996). We shall return to this question in Section 7.

A generalization of (3) which has been extensively investigated in the

literature under the name of a ª generalized Nambu dynamicsº goes in another

direction (Bayen and Flato, 1975; Takhtajan, 1994; Gautheron, 1996; Chat-

terjee and Takhtajan, 1996). One treats the e not as structure constants, but
as a volume form. From this perspective it is natural to consider

{A1, . . . , An 5 e a1. . .an

- A1

- xa1

. . .
- An

- xan

(5)

The parameter n is a dimension of the state space. It is not clear how to

extend this type of description to infinite-dimensional spaces.

2.2. Biaøynicki-Birula and Morrison (1991):
Liouville ± von Neumann equation

The observation that the Liouville±von Neumann equation for a Wigner

function can be written as a Lie±Nambu equation with nontrivial structure

constants is due to Biaøynicki-Birula and Morrison (1991). Below, instead
of the Wigner function, which is defined in terms of position±momentum

coordinates, we shall stick to the more symmetric position±position represen-

tation. This will lead to a specific form of structure constants whose symmetry

properties will be essential for further generalizations (Czachor, 1997a; Cza-

chor and Kuna, 1997a).
The density matrix in position representation is denoted by r (a, a8) 5 :

r a , where we use a and a8 instead of more typical x and x8, and the lower

composite index is introduced for brievity. The kinetic energy is represented

by the kernel

# dy K (a, y) r ( y, a8) 5
2 D a

2m
r (a, a8) (6)
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and the Hamiltonian operator by

H (a8, a) 5 K (a8, a) 1 V (a) d (a 2 a8) (7)

It is easy to check that the equation

# db db8 dc dc8i - t r a 5

3 ( d (a 2 b8) d (b 2 c8) d (c 2 a8) 2 d (a 2 c8) d (b 2 a8) d (c 2 b8))üïïïïïïïïïîìïïïïïïïïïþ

V abc

3 H(b8, b) r (c8, c) (8)pp
Hb r c

5 V abc H b r c (9)

is equivalent to the Liouville±von Neumann one. The form (9) simultaneously
illustrates the use of composite indices and the summation convention. Notice

that the composite indices are in their lower or upper position, and the

transition between the two is given by the metric tensor gab working as follows:

g ab r b 5 # db db8 d (a 2 b8) d (b 2 a8) r (b, b8) 5 r (a8, a) 5 r a (10)

So if r a 5 r (a, a8), then r a 5 r (a8, a). Although the latter formula may seem

somewhat artificial and was not used by Biaøynicki-Birula and Morrison, it

will prove extremely useful when we arrive at various generalizations. The

distributions V abc are structure constants of an infinite-dimensional Lie alge-
bra, which can be checked by raising a with the help of gab and verifying

the standard properties. One should be aware of the fact that gab is not the

Cartan±Killing metric (which does not exist in this case). Writing gab r a r b 5
Tr( r Ã2) 5 : C2 5 : 2S, one recognizes that gab is a kernel form of the Hilbert±

Schmidt metric. Let now H( r Ã) 5 Tr HÃr Ã. Taking into account that H a 5
d H/ d r a and r a 5 d S/ d r a ( d / d r a is a functional derivative), we can write the

Liouville±von Neumann equation in the Biaøynicki-Birula±Morrison form as

i r Ç k 5 r a V a
bc

d r k

d r b

d H

d r c

5 { r k , H } (11)

5 V abc
d r k

d r a

d H

d r b

d S

d r c

5 { r k , H, S} (12)

Although the relationship of (11) and (12) to (2) and (3), is obvious, it

requires a few comments. First of all, the equations are Lie±Poisson and

Lie±Nambu and not ª generalized Nambuº in the sense of the previous subsec-
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tion. The Lie algebra and the space of states are both infinite dimensional.

H is an average energy and C2 5 2S is a Casimir invariant called an ª entropy.º

[Actually, it is, up to constants, a 2-entropy of DaroÂczy (1970) or Tsallis
(1988), and is closely related to ReÂnyi’ s a -entropies (ReÂnyi, 1960, 1961).]

3. DIGRESSION ON PURE STATES

We need one more formal prerequisite before we go further. The Liou-

ville±von Neumann equation for mixed states has its roots in the pure-state

SchroÈ dinger equation. It turns out that the same is true of the structure
constants V abc. Let us switch now one level higher and instead of speaking

about a nonrelativistic, spin-0 SchroÈ dinger equation consider general Hamil-

ton equations on a separable Hilbert space:

i v a a 8 c Ç a 5
d H

d c Å a 8
, 2 i v a a 8 c Ç a 8 5

d H

d c a
(13)

If c a 5 c (a), v a a 8 5 d (a 2 a8), H 5 ^ c | HÃ| c & , and an obvious summation/
integration convention is applied, (13) is equivalent to the SchroÈ dinger equa-

tion (Chernoff and Marsden, 1974). v a a 8 is a symplectic form in the complex

coordinates c 5 q 1 ip. The explicit form of v a a 8 varies from representation

to representation and is different for, say, the Dirac equation, or a nonrelativis-

tic particle with spin. It is important, however, that the form of the Hamilton

equations (13) is always the same [although the dot at its LHS may have
different meanings as well; cf. Czachor (1997a), Czachor and Kuna (1997a)]

and that v a a 8 c a f Å a 8 5 ^ f | c & . Equations (13) can be written in a form involv-

ing a Poisson tensor

i c Ç a 5 I a a 8
d H

d c Å a 8
, 2 i c Ç a 8 5 I a a 8

d H

d c a
(14)

A pure-state density matrix is given by r a 5 r a a 8 5 c a c Å a 8 and v a a 8 r a a 8 5
v a r a 5 Tr r Ã. A pure-state Poisson bracket corresponding to (14) and its

complex conjugated equation is

{A, B} 5 Ia
d A

d c a

d B

d c Å a 8
2 (A % B) (15)

5 r a V a
bc

d A

d r b

d B

d r c

(16)
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which holds for all functions A ( r a) 5 A ( c a c Å a 8) and B ( r a) 5 B ( c a c Å a 8). The

structure constants are

V a
bc 5 d a 8

b 8 d a
g I b g 8 2 d a 8

g 8 d a
b I g b 8 (17)

V abc 5 I a b 8I b g 8I g a 8 2 I a g 8I b a 8I g b 8 (18)

V abc 5 2 v a b 8 v b g 8 v g a 8 1 v a g 8 v b a 8 v g b 8 (19)

where the deltas are defined by

I a b 8 v a a 8 5 d a 8
b 8 (20)

I b a 8 v a a 8 5 d a
b (21)

The metric tensor that raises and lowers the composite indices is given by

g ab 5 v a b 8 v b a 8 and gab 5 I a b 8I b a 8. The reader may check that we obtain the

Biaøynicki-Birula±Morrison formulas if we replace v ’ s and I’ s by the

Dirac deltas.

4. HIGHER ORDER ª METRICº TENSORS

In this section we introduce several technical results which will turn

our abstract composite index language into a practical tool.

We have seen that Tr( r Ã2) 5 gab r a r b. It is useful to introduce higher order
tensors satisfying Tr( r Ãn) 5 g a1. . .an r a1. . . r an. Define

g a1. . .an 5 v a 1 a 8n v a 2 a 81 v a 3 a 82 . . . v a n 2 1 a 8n 2 2 v a n a 8n 2 1 (22)

Ga1. . .an 5 I a 1 a 8n I a 2 a 81 I a 3 a 82 . . .I a n 2 1 a 8n 2 2 I a n a 8n 2 1 (23)

If we lower the indices in (22), we see that, somewhat counterintuitively, g
does not go directly into G (although gab v b 5 Ia!), but

ga1b1 . . . ganbng
b1. . .bn 5 ga1. . .an 5 Ganan 2 1. . .a1 (24)

So define a * -operation which reverses the order of indices: ** 5 id,

g *a 5 ga , g *ab 5 gba 5 gab, and

g *a1. . .an 5 Ga1. . .an 5 ganan 2 1. . .a1 (25)

and similarly with the upper indices. The following properties are essential

for further calculations.
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(a) Cyclicity

ga1. . .anb1. . .bm 5 gb1. . .bma1. . .an (26)

g *a1. . .anb1. . .bm 5 g *b1. . .bma1. . .an (27)

(b) ª Cut-and-glueº

g *a1. . .anxg *x
an 1 1. . .an 1 m 5 *ga1. . .an 1 m (28)

g a1. . .anxg an 1 1. . .an 1 m
x 5 g a1. . .an 1 m (29)

(c) ª Annihilationº

Ixg
a1. . .akxak 1 1. . .an 1 m 5 g a1. . .akak 1 1. . .an 1 m (30)

v xga1. . .akxak 1 1. . .an 1 m 5 ga1. . .akak 1 1. . .an 1 m (31)

(d) ª Drag-and-dropº

g b1. . .b1
x g a1. . .akxak 1 1. . .an 1 m 5 g a1. . .akb1. . .blak 1 1. . .an 1 m (32)

g x
b1. . .bll ga1. . .akxak 1 1. . .an 1 m 5 ga1. . .akb1. . .blak 1 1. . .an 1 m (33)

It is practical to accept the rule stating that complex conjugation inter-

changes primed and unprimed indices. Assuming this, we can define symmet-
ric operators AÃas those whose kernels satisfy A a b 8 5 A b a 8. We find also that

ga1. . .an 5 g *a1. . .an (34)

As a consequence,

ga1. . .anA
a1
1 . . . A an

n 5 ga1. . .anA
a1
n . . . A an

1 (35)

which is an abstract-index version of the well-known rule

Tr(AÃ1 . . . AÃn) 5 Tr(AÃn . . . AÃ1) (36)

valid for symmetric operators. In order to translate the abstract-index formulas
into more standard operator ones, one uses the following correspondence:

(AÃ1 . . . AÃn)a 5 gaa1. . .anA
a1
1 . . . A an

n (37)

5. STRUCTURE CONSTANTS REVISITED

A Lie±Nambu 3-bracket written in the form (4) is based on a totally

antisymmetric 3-index tensor. Obviously, the tensor has 3-indices for all Lie

algebras and for this reason it is not immediately clear whether a generalization

of (4) to a ª generalized Nambuº n-bracket is possible. On the other hand,
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the structure constants occurring in (12) have a rich structure and it turns

out there exists a natural generalization of (12).

To begin with, let us note that

V abc 5 gabc 2 gacb 5 2!ga[bc] 5 2!g[abc] (38)

V abc 5 g abc 2 g acb 5 2!g a[bc] 5 2!g [abc] (39)

where [. . .] denotes an antisymmetrization.

Consider

V a1. . .an 5 (n 2 1)!g[a1. . .an] (40)

Lemma 1. We have

g[a1. . .a2m] 5 0 (41)

g[xa1. . .a2m] 5 gx[a1. . .a2m] (42)

v x V a1. . .x. . .an 5 0 (43)

Proof (a) Equation (41):

g[a1. . .an] 5 g[a2. . .ana1] 5 ( 2 1)n 2 1g[a1. . .an]

where the cyclicity and total antisymmetry were used. The expression vanishes

for even n.
(b) Equation (42): Assume n 5 2m. We have

g[xa1. . .an]

5
1

n 1 1
(gx[a1. . .an] 1 . . . 1 ( 2 1)k g[a1. . . ak | x | ak 1 1. . .an] 1 . . . 1 ( 2 1)n g[a1. . . an]x)

5
1

n 1 1
(gx[a1. . . an] 1 . . . 1 ( 2 1)k gx[ak 1 1. . .ana1. . .ak ] 1 . . . 1 gx[a1. . .an])

5
1

n 1 1
(gx[a1. . . an] 1 . . . 1 ( 2 1) k 1 (n 2 k)k gx[a1. . . an] 1 . . . 1 gx[a1. . . an])

5 gx[a1. . . an]

where we have used the cyclicity and the fact that (n 2 k 1 1)k is even for

any k if n is even.
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(c) Equation (43): It is sufficient to note that the annihilation property

together with (41) and (42) imply

v xg[xa1. . .a2m] 5 v xgx[a1. . .a2m] 5 g[a1. . .a2m] 5 0 n

6. GENERALIZED LIE± NAMBU BRACKETS

We define the generalized Lie±Nambu bracket for n 5 2m 1 1 by

{A1, . . . , An} 5 V a1. . .an

d A1

d r a1

. . .
d An

d r an

(44)

Let Ck 5 g a1. . .ak r a1 . . . r ak.

Theorem 1. We have

{Ck1, . . ., Ck(n 1 1)/2, ? , . . . , ? } 5 0 (45)

Proof. Let us begin with the following remark. Assume a tensor F. . .abc. . .

has the ª drag-and-drop º property

F. . .abc. . .g
c
c1c2 5 F. . .abc1c2. . .

and consider

F. . .[abc]. . . r ag c
c1c2 r c1 r c2

5
1

6
(F. . .abc. . . 1 F. . .bca. . . 1 F. . .cab. . . 2 F. . .acb. . . 2 F. . .cba. . .

2 F. . .bac. . .) r ag c
c1c2 r c1 r c2 (46)

5
1

6
(F. . .abc1c2. . . 1 F. . .bc1c2a. . . 1 F. . .c1c2ab. . . 2 F. . .ac1c2b. . .

2 F. . .c1c2ba. . . 2 F. . .bac1c2. . .) r a r c1 r c2

5
1

6
(F. . .abc1c2. . . 2 F. . .c1c2ba. . .) r a r c1 r c2

which in general does not vanish. We can see therefore that for expressions

such as (46) to vanish, it is sufficient to have in each term of the decompositi-
tion (46) at least two transvected indices which are not seperated by a non-

transvected one. With this observation in mind consider

gx[a1. . .aNc1. . .cM] g
a1

a1
1. . .a

K
1

1 . . . g
aN

a1
N

. . .a
K
N

N r a1
1 . . . r a

K1
1 . . . r a1

N . . . r a
K1
N (47)

Expanding (47), we obtain a sum involving expressions gx. . .ij. . . and gx. . .ji. . .
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entering with opposite signs. If N and M are chosen in a way to guarantee

that for any such term there exists at least a pair (ak , al) of indices that are

not separated by some cr , then (47) vanishes on the basis of the preceding
argument. We know that N 1 M is an even number. Therefore the greatest

N that allows for a separation of any two ak is N 5 (N 1 M )/2 5 M 5
(n 2 1)/2. To complete the proof, it is sufficient to note that (47) equals

1

k1

. . .
1

kn

{Ck1, . . . , CkN, ? , . . . , ? } (48)

where kj 5 Kj 1 1. n

Remarks. (1) Total antisymmetry of (44) guarantees that {Ck , Ck , . . .}

5 0. Moreover, (43) leads to {C1, . . .} 5 0. Since C1 5 Tr r Ã, the dynamics

generated by such brackets is trace preserving.

(2) For any k, l, we have {Ck , Cl , . . . } | purestates 5 0. This follows from

g ab1. . .bn r b1. . . r bn ) purestates 5 r aC n 2 1
1 ) purestates (49)

(3) Theorem 1 was proved for n 5 3 in Czachor (1997a).

Theorem 2. Let Sj 5 Sj (C1, C2, . . .) be a differentiable function of Ck ,

k 5 1, 2, 3, . . . , and zn a complex number. The dynamics given by

r Ç a 5 zn{ r a, H1, . . . , H(n 2 1)/2, S1, . . . , S(n 2 1)/2} (50)

conserves Ck. The Ck are Casimir invariants, i.e.,

{Ck , A1, . . . , A(n 2 1)/2, S1, . . . , S(n 2 1)/2} 5 0 (51)

for any functions Ak.

Remarks. (1) Theorem 2 is a straightforward consequence of Theorem 1.

(2) The number zn will be assumed to satisfy zÅ n 5 2 zn (for n 5 4m 1
3) or zÅ n 5 zn (for n 5 4m 1 1), m 5 0, 1, 2, . . . . The simplest choice is

therefore either zn 5 2 i, for n 5 4m 1 3, or zn 5 1, for n 5 4m 1 1 (see

the discussion below).

7. 3-BRACKET

The simplest n 5 4m 1 3 case is n 5 3. The discussion given by
Biaøynicki -Birula and Morrison dealt with linear quantum mechanics. The

possibility of using the 3-bracket dynamics as a departure point for nonlinear
generalizations of quantum mechanics was described in some detail in Cza-

chor (1997a). One of the main motivations for studying the 3-bracket dynam-

ics was the possibility of introducing nonlinearities only by generalizations
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of S and without modifications of H. Generalizations via nonlinear H are

interesting and will be discussed in the next sections. An important drawback

of such Hamiltonian generalizations is that we have to represent observables
by nonlinear operators, which leads to interpretational difficulties. To give

an example, it is not clear which definition of a nonlinear eigenvalue is

physically meaningful, or how to represent higher moments of experimentally

measured random variables if nonlinear operators are involved (Czachor,

1996a). Let us therefore first consider what happens if H 5 H a r a 5 Tr HÃr Ã

and S is an arbitrary (differentiable) function of the Casimirs Ck. It is easy
to see that the dynamics given by a 3-bracket is then linear if and only if S
is linear in C2 (Czachor, 1997a).

7.1. Lie± Nambu Duality

Does the 3-bracket lead to a Poisson bracket? The answer to this question

reveals an interesting duality which points to two different generalizations

of linear quantum mechanics. To understand the problem define {A, B}X : 5
{A, B, X } and check whether the Jacobi identity is satisfied. Consider

{{A, B}X , C }X 1 {{C, A}X , B}X 1 {{B, C }X , A}X

5
d A

d r d

d B

d r e

d 2X

d r a d r f

d C

d r b

d X

d r c

( V def V abc 1 V bdf V aec 1 V ebf V adc) (52)

The terms involving second derivatives of A, B, and C drop out just because

of the total antisymmetry of structure constants. The term involving the

second drivative of X vanishes in several cases. For X 5 S 5 gab r a r b/2 the
second derivative gives g af and (52) vanishes on the basis of the structure

constants version of the Jacobi identity. With this choice of X the bracket

{ ? , ? }S is a Lie±Poisson bracket and the dynamics given by

r Ç a 5 2 i{ r a , H}S 5 2 i{ r a, H, S} (53)

is an ordinary Lie±Poisson dynamics. If H is nonlinear, the dynamics corres-

ponds to the nonlinear quantum mechanics in the BoÂna±Jordan version (BoÂna,

1991; Jordan, 1993). It can be shown that such brackets satisfy the Jacobi

identity for all S 5 S (C2) (Czachor, 1996b). If S is a function of higher order

Casimirs, say, S 5 C3, the Jacobi identity does not hold. However, rewriting
(53) as

r Ç a 5 2 i{ r a , S} 2 H 5 2 i{ r a , S, 2 H} (54)

we obtain a Poisson bracket for any S if X 5 2 H is linear. It follows that

the requirement that observables are linear leads us, via the Lie±Nambu 3-

bracket, to a dual Poisson structure given by (54). This Lie ± Nambu duality
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(H, S) % (S, 2 H ) is typical of all Lie±Nambu theories and is analogous to

the canonical (q, p) % ( p, 2 q) and electromagnetic (E, B) % (B, 2 E ) dualities.

The duality transformation is a particular case of the duality rotation

{ ? , H, S} 5 { ? , H cos a 2 S sin a , H sin a 1 S cos a } (55)

It is noteworthy that since the X-bracket does not in general satisfy the

Jacobi identity, the 3-bracket cannot satisfy the so-called fundamental identity
discussed in Takhtajan (1994). The example of the Lie±Nambu duality, where

the Jacobi identity simultaneously holds and does not hold (depending on

the viewpoint), clearly shows that status of such identities is more technical

than fundamental. Each kind of dynamics seems to have its own fundamental

criteria of sensibility. In this work we insist on the positivity of density
matrices and lack of faster-than-light effects.

Of interest in the context of the duality is the pure-state case where Cn

5 ^ c | c & n, S 5 S (| c |), and H 5 ^ c | HÃ| c & . The Hamilton equations (14) can

be written as

i c Ç a 5 H a a 8
d I

d c a 8
, 2 i c Ç a 8 5 H a a 8

d I

d c a
(56)

where I 5 v a a 8 c a c a 8 5 | c |2. If c 5 c AB is the electromagnetic spinor, its
squared norm | c |2 is equal to the classical energy of the field. Therefore here

H is not the energy, although formally it is an expression analogous to the

Dirac Hamiltonian function (Biaøynicki -Birula, 1996). It is known that the

Hamiltonian formalism based on the energy density | c (x) | 2 5 E(x)2 1 B(x)2

corresponds to the Poisson tensor which involves the differential operator
-

J ? i
-

, 5
-

, 3 (Biaøynicki-Birula and Biaøynicka-Birula, 1976). On the other
hand, taking H 5 ^ c |

-
J ? i

-
, | c & as the Hamiltonian function, one gets the

Poisson tensor which involves no differentiations. The nonlinear electrody-

namics of the Born±Infeld type (PlebanÂski, 1970) may be regarded as a

nonlinear generalization within the { ? ,S} 2 H scheme.

Another manifestation of the duality can be seen in a simpler case of

N harmonic oscillators. The classical energy E 5 ( ( p2
k 1 q 2

k) 5 ( | pk 1
iqk | 2 5 ( | c k | 2 can be regarded as a norm squared in the Hilbert space CN.

It is an easy exercise to rewrite the equations of motion as an N-dimensional

SchroÈ dinger equation with HÃbeing a diagonal matrix whose eigenvalues are

the energies of the oscillators, but then H 5 ^ c | HÃ| c & is not the energy.

The above facts suggest an alternative interpretation of the Poisson

structures that occur in quantum mechanics: A modification of H (say, by
interactions) can be understood as a deformation of the Poissonian structure

{ ? , ? } 2 H of the manifold of states, and not as a modification of a Hamiltonian

function. Keeping H unchanged, but modifying S, one changes a flow on the

Poisson manifold, but the structure of the manifold itself is unchanged.
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7.2. Canonical Transformations

Nonlinear quantum mechanics based on { ? , ? }S uses nonlinear H and

S 5 S (C2). The canonical transformations must therefore be those that do

not change C2 5 Tr( r Ã2) (or ^ c | c & for pure states). Such transformations can

be nonlinear and were discussed by Weinberg (1989) and Jordan (1993). The

version based on { ? , ? } 2 H leads to canonical transformations that keep H
5 TrHÃr Ãlinear (or ^ c | HÃ| c & bilinear for pure states). The two classes of

transformations are not equivalent. It is natural to require that only those

observables which commute with H have to be represented by linear function-

als. Various Poissonian structures that appear in this context may be used

also for a combined quantum ±classical description, as shown by Jones (1993,
1994) for the Weinberg-type theory.

7.3. Formal Solutions

Consider first the dynamics with S 5 Ck 1 1 /(k 1 1). The 3-bracket
equation

r Ç a 5 2 i{ r a , H, S} 5 2 i V abcH
bgcc1 . . . ck r c1 . . . r ck (57)

has solutions which can be formally written as

{. . .{{ r a(0), H, S}, H, S} . . . , H, S} (58)r a(t) 5 o
`

n 5 0

( 2 it)n

n! p
n

Let r a(0) 5 r a(0). In the standard notation we have r Ã(0) 5 r Ã(0)* and

r ÃÇ 5 2 i [HÃ, r Ãk] 59

For r Ã5 r Ã2, (59) is the ordinary linear Liouville±von Neumann equation.

Asuming HÃ* 5 HÃ, we find r Ã
Ç
(0)* 5 r Ã(0). In the same way we can prove

that d n r Ã/dt n | t 5 0 5 (d n r Ã/dtn | t 5 0)*. It follows that the formal solution satisfies

r Ã(t) 5 r Ã(t)* if r Ã(0) 5 r Ã(0)*. The same argument applies to more general
S 5 S (C1, C2, . . .). Equation (59) is interesting in itself even in finite-

dimensional cases, where the above argument can be made more rigorous.

To show that the spectrum of self-adjoint Hilbert±Schmidt solutions of the

3-bracket equations of motion is conserved by the 3-bracket dynamics, one

uses the following result.

Lemma 2. Consider a sequence of probabilities {pk}
`
k 5 0 and an arbitrary

real sequence {ak}
`
k 5 0 satisfying for any natural n

o
`

k 5 0
p n

k 5 o
`

k 5 0
a n

k (60)

Then the two sequences are identical up to permutation.
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Remarks. (1) Let the two sequences represent spectra of a Hermitian

Hilbert±Schmidt solution of the n-bracket equation at t 5 0 and t Þ 0,

respectively. Since t j r Ã(t) is continuous, the spectrum of r Ã(t) is also continu-
ous and, hence, conserved. The condition (60) is implied by conservation

of Cn.

(2) Lemma 2 was proved in Czachor and Marciniak (1997).

(3) Such solutions can be interpreted as nonlinearly evolving density

matrices. The question of their complete positivity will be discussed below.

8. 5-BRACKET

The case n 5 5 is the simplest (nontrivial) 4m 1 1 case. The equation

of motion is (z5 5 1)

r Ç a 5 { r a , H1, H2, S1, S2} (61)

Assume that Hk are linear in r . The simplest choice of the other two generators
is S1 5 C2/2, S2 5 C3/3. Nontrivial 5-bracket equations of motion (61) are

always nonlinear, as opposed to the 3-bracket ones, which can be linear, and

always vanish on pure states. The RHS of (61) when written in the standard

notation involves an antisymmetrized product of HÃ1, HÃ2, r Ã, and r Ã2. After a

simplification one finds

r Ã
Ç

5 ([ r Ã, HÃ1]HÃ2 2 [ r Ã, HÃ2]HÃ1) r Ã2 1 r Ã2(HÃ2[HÃ1, r Ã] 2 HÃ1[HÃ2, r Ã])

1 r Ã(HÃ2 r Ã2HÃ1 2 HÃ1 r Ã2HÃ2) 1 (HÃ1 r Ã2HÃ2 2 HÃ2 r Ã2HÃ1) r Ã (62)

The RHS of (62) is Hermitian if r Ã, HÃ1, and HÃ2 are Hermitian. This explains

the choice of real z5. For r Ã5 r Ã2, (62) vanishes. Assuming that r (0) 5 r (0)*,

we find that all higher derivatives are also Hermitian. The formal solution

{. . .{{ r a(0), H1, H2, S1, S2}, H1, H2, S1, S2} . . . , H1, H2, S1, S2} (63)r a(t) 5 o
`

n 5 0

t n

n! p
n

satisfies r (t) 5 r (t)* if r (0) 5 r (0)*. Using the same argument as for n 5
3, we conclude that the spectrum of self-adjoint and Hilbert±Schmidt solutions

of (61) is conserved.

9. N-PARTICLE EXTENSIONS OF ONE-PARTICLE ALMOST-
LIE± POISSON DYNAMICS

An extension of dynamics from 1 to N particles is a delicate problem.

Careful analysis shows that the Lie±Nambu duality holding for the 3-brackets
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leads to generalizations which behave differently from the viewpoint of N-

particle extensions. The Poisson dynamics based on { ? , ? }s for S 5 C2/2 is

the most regular one. An inclusion of nonlinear Hamiltonian functions H
does not lead to difficulties with independent evolutions of separated systems.

This fact was proved by Polchinski (1991) and Jordan (1993) and recently

generalized by myself to those nonlinear theories which do not possess

Hamiltonian functions, but only Hamiltonian operators (Czachor, 1997b). In

spite of this, the view that any nonlinear generalization of a SchroÈ dinger

dynamics leads to problems with causality is quite popular. Nonlinear quantum
mechanics based on { ? , ? } 2 H leads to a new kind of nonlocal phenomenon.

This effect, typical of mixed states, is analogous to the threshold phenomena

discussed by Goldin and Svetlichny (1994) for pure states.

9.1. N-Particle ª Metricº Tensors

Let ga1 . . . an be a one-particle metric tensor. The N-particle tensor is
defined by

g N
a1 . . . an 5 ga1

1 . . . a1
n . . . ga

N
1 . . . aN

n (64)

The indices on the LHS of (64) are the N-particle ones: a1 5 a 1
1 . . . a N

1 , etc.

The N-particle n-bracket is defined by

{A1, . . . ,An}
N 5 V N

a1 . . . an

d A1

d r N
a1

. . .
d An

d r N
an

(65)

where r N
a 5 r a1 . . . aN,

V N
a1 . . . an 5 (n 2 1)! g N

[a1 . . . an] (66)

For identical particles (bosons and fermions), r a1 . . . aN 5 r (a1 . . . aN) with (. . .)

denoting symmetrization. A distinction between fermions and bosons can be

seen at the ª spinor indexº level:

r a
1

. . . a
N 5 r [ a 1 | a 8

1 | . . . | a N
] a 8

N 5 r a 1
[ a 8

1 | . . . | a N | a 8
N

] (fermions) (67)

r a1 . . . aN 5 r ( a 1 | a 81 | . . . | a N) a 8N 5 r a 1( a 81 | . . . | a N | a 8N) (bosons) (68)

For the 3-bracket the annihilation property implies the important identity

V N
abc v b1 . . . v bk 2 1 v bk 1 1 . . . v bN

5 ga1c1 . . . gak 2 1ck 2 1 V ak bkck gak 1 1 ck 1 1 . . . gaNcN (69)

where V akbkck are the one-particle structure constants of the kth particle.
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9.2. Extension of Hamiltonians

The 3-bracket dynamics is Lie±Poisson if S 5 C2/2 and a Hamiltonian

function H exists. There exist nonlinear Liouville±von Neumann equations
that possess Hamiltonian operators of the form HÃ( r ) 5 HÃ1( r ) 1 HÃ2( r ) where

Tr HÃ2( r ) r Ã 5 0. Such equations do not possess a Hamiltonian function

Tr HÃ( r ) r Ã, but often are of physical interest [e.g., starting with nonlinearizable

Doebner ±Goldin SchroÈ dinger equations (Doebner and Goldin, 1996), one

arrives at this class of mixed state equations (Czachor, 1997b)]. Equations

that can be written as

r Ç a 5 2 i V abcH
b( r ) r c (70)

although no H satisfying H b 5
d H

d r b

exists, will be called almost-Lie±Poisson.

Assume we have N (not necessarily identical) particles that do not interact

with one another (but can interact with something else and do not have to

be free). Each of them satisfies a one-particle equation (70) with some H.

We define the N-particle extension of (70) by

r N
a 5 2 i V N

abc Hb( r N) r Nc, (71)

where

H b( r N) 5 H b1
1 ( r (1)) v b2 . . . v bN 1 . . . 1 v b1 . . . v bN 2 1 H bN

N ( r (N)) (72)

The reduced density matrix r (k) is defined by

r (k)ak 5 v a1 . . . v ak 2 1 v ak 1 1 . . . v aN r a1. . .ak. . .aN (73)

There are two motivations for (72). First, if the kth particle is described by

a Hamiltonian function Hk( r ) 5 Hk( r (k)), then (72) is just a consequence of

the chain rule for functional derivatives. The second motivation is (69).
Indeed, applying (69) to (71), we obtain

i r Ç a1. . .aN 5 V a1b1c1 H b1
1 ( r (1)) r c1

a2. . .aN 1 . . . (74)

1 V aNbNcN H bN
N ( r (N)) r a1. . .aN 2 1

c
N

Transvecting both sides of (74) with

v a1. . . v ak 2 1 v ak 1 1. . . v aN

and using v a V abc 5 0, we get

r Ç (k)a 5 2 i V akbkck H bk
k ( r (k)) r ck

(k) (75)

Both sides of (75) depend only on objects which are intrinsic to the kth
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subsystem. It follows that the reduced density matrix of this subsystem

ª does not seeº the other noninteracting systems. The observers in the other
subsystems have no possibility of influencing the dynamics of the kth one by
any kind of modification of the Hamiltonians in the other separated systems.
In particular, they cannot influence any observable quantity in the kth subsys-

tem by different choices of measurements in their ª ownº subsystems. This

explicitly contradicts the popular claim that any nonlinear dynamics must

imply faster-than-light influences between separated systems.

Denoting the dynamics of the N-particle system by f t
N, the one corres-

ponding to the kth subsystem by f t
k, and by Tr N 2 k the partial trace which

reduces the dynamics from the composite system to the kth one, we get an

important separability condition

TrN 2 k + f t
N 5 f t

k + TrN 2 k (76)

characteristic of the Lie±Poisson dynamics. The dynamics satisfying (76)

and (75) can be termed completely separable.

9.3. Examples of Completely Separable Extensions

The method of extension given by (72) applies to any equation whose

one-particle Hamiltonian operator can be written as a function of the particle’s
density matrix. This applies also to pure-state (SchroÈ dinger) equations. To

see how this works for nonlinear SchroÈ dinger equations, consider some exam-

ples. A Hamiltonian operator consists of two parts: a linear part HÃL(x) 5
HÃkinetic 1 V (x) and a nonlinear part HÃNL 5 HÃ( c , c Å ; x). To apply the above

method we have to be able to write HÃ( c , c Å ; x) as HÃ( r ; x).

(a) ª Nonlinear SchroÇ dinger equationº :

HÃ( c , c Å ; x) 5 | c (x) | 2 ® HÃ( r ;x) 5 r (x, x)

(b) Biaøynicki-Birula ± Mycielski equation (Biaøynicki-Birula and Mycielski,

1976):

HÃ( c , c Å ; x) 5 ln( | c (x) | 2) ® HÃ( r ; x) 5 ln r (x, x)

Obviously in the same way one can treat any equation with nonlinearities

given by some function H ( | c (x) | ).
(c) Haag ± Bannier equation (Haag and Bannier, 1978):

HÃ( c , c Å ; x) 5
-

A (x)
c Å (x)

-
¹ x c (x) 2 c (x)

-
¹ x c Å (x)

2i | c (x) | 2
®

HÃ( r ; x) 5
-

A (x)
# dz d (x 2 z)

-
¹ x [ r (x, z) 2 r (z, x)]

2i r (x, x)
(77)



492 Czachor

(d) Doebner ± Goldin equations (Doebner and Goldin, 1996; Nattermann,

1997). There are five nonlinear terms denoted by Rk:

R1( c , c Å ; x) 5
1

2i

c Å (x) D x c (x) 2 c (x) D x c Å (x)

| c (x) | 2
®

R1( r ; x) 5
1

2i

# dz d (x 2 z) D x [ r (x, z) 2 r (z, x)]

r (x, x)

R2( c , c Å ; x) 5
D x | c (x) | 2

| c (x) | 2
® R2( r ; x) 5

D x r (x, x)

r (x, x)

R3( c , c Å ; x) 5
1

(2i)2

[ c Å (x)
-

¹ x c (x) 2 c (x)
-

¹ x c Å (x)]2

| c (x) | 4 ®

R3( r ; x) 5
1

(2i)2

1 # dz d (x 2 z)
-

¹ x [ r (x, z) 2 r (z, x)] 2 2

r (x, x]2

R4 ( c , c Å ; x) 5
1

2i

[ c Å (x)
-

¹ x c (x) 2 c (x)
-

¹ x c Å (x)] ?
-

¹ x | c (x) | 2

| c (x) | 4

R4( r ; x) 5
1

2i

# dz d (x 2 z)
-

¹ x [ r (x, z) 2 r (z, x)] ?
-

¹ x r (x, x)

r (x, x)2

R5 ( c , c Å ; x) 5
[

-

¹ x | c (x) | 2]2

| c (x) | 4
® R5( r ; x) 5

[
-

¹ x r (x, x)]2

r (x, x)2

(e) Twarock equation on S 1 (Twarock, 1997):

HÃ( c , c Å ; x) 5
c (x)9 c (x)8 2 c (x)9 c (x)8

c (x) c (x)8 2 c (x) c (x)8
®

HÃ( r ; x) 5 F # dy d (x 2 y) - 2
x r (x, y) G F # dz d (x 2 z) - 2

x r (z, x) G 2 c.c.

r (x, x) # dy d (x 2 y) - x r (x, y) 2 c.c.

(f) (n, n)-homogeneous nonlinearities. Denote by D a differential opera-

tor involving arbitrary mixed partial derivatives up to order k. Consider a

real function H ( c ) 5 F (D c (x)), which is (n, n)-homogeneous, i.e., satisfies

H ( l c ) 5 l n l Å nH ( c ). We first write



Lie± Nambu and Beyond 493

F (D c (x)) 5
F ( c (x)D c (x))

| c (x) | 2n

and then apply the tricks used for the Haag±Bannier, Doebner±Goldin, and
Twarock terms. Obviously any reasonable function of such (n, n)-homoge-

neous expressions with different n’ s will do as well.

Let us now concentrate on the simplest case with Hk( r ; x) 5 Hk( r (x,

x)) and just two particles. The two-particle extension of the nonlinear part

of the Hamiltonian is

HÃ1( r (1)(x1, x1)) 1 HÃ2( r (2)(x2, x2))

5 H1 # 1 dy r (x1, y, x1, y) 2 1 H2 1 # dy r ( y, x2, y, x2) 2 (78)

If the two-particle state is pure, r (x1, x2, x 81, x 82) 5 C (x1, x2) C * (x 81, x 82), the

RHS becomes

H1 1 # dy | C (x1, y) | 2 2 1 H2 1 # dy | C ( y, x2) | 2 2 (79)

and reduces to

H1( | c (x1) | 2) 1 H2( | f (x2) | 2) (80)

on product states C (x1, x2) 5 c (x1) f (x2).
It seems that an example that cannot be treated in this way is the Kostin

equation (Kostin, 1972) involving the nonlinearity ln[ c (x)/ c (x)].

The reader may have noticed that the above reasoning involves two

ª hereticalº elements. First of all the two-particle extension of dynamics for

nonfactorizable (entangled) states leads to integrodifferential equations. Such

equations are typically rejected in the nonlinear quantum mechanics literature
as nonlocal. The construction presented above shows that the situation is in

fact just the opposite. The requirement of locality (complete separability)

leads us to appropriate integral terms and precisely because of these terms

the subsystems can be completely isolated from one another. Second, all
nonlinearities of the form F ( | c (x) | 2) are acceptable. This is in an apparent
contradiction with the well-known result of Biaøynicki-Birula and Mycielski,

who used the separability criterion to derive the logarithmic nonlinearity.

However, they assumed that the two-particle extension has to be F( | C (x1,

x2) | 2) and, with the condition

F ( | c (x1) f (x2) | 2) 5 F ( | c (x1) | 2) 1 F ( | f (x2) | 2) (81)

they found that only F , ln is acceptable. One obvious drawback of such
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extensions is that they do not tell us what to do if the systems are noninter-

acting, but correlated and C (x1, x2) does not factorize. In such a case local
probability densities are obtained by integrating out the coordinates of the
remaining particles and it is quite logical that such expressions occur in the

N-particle ª correctly extendedº Hamiltonians we discussed.

9.4. Problem of Complete Positivity

A subsystem described by r (k) can be embedded into a composite one
described by r N in a way guaranteeing the consistency of (71) and (75). The

dynamics of r (k) is independent of N. In addition, since both r (k) and r N satisfy

the 3-bracket Lie±Poisson equation, the extension procedure preserves the

positivity of dynamics at both subsystem and composite system levels. A

dynamics that has these properties is typically associated with the notion of
a completely positive map, provided the maps are linear.

In the mathematical literature the notion of complete positivity is general-

ized to nonlinear maps in a way that can be translated to our context as

follows (Ando and Choi, 1986; Arveson, 1987; Majewski, 1990; Alicki and

Majewski, 1990). One takes a positive map

f t
1(a) 5 a (t), f t

1: ! ® ! (82)

where ! is a unital C*-algebra. In our case a 5 r (k) and f t
1(a) 5 r (k)(t).

Assume for simplicity that the dimension of the kth system is finite. In the

next step one considers a density matrix r N (0) of a bigger system consisting

of the original one plus a system which has a finite number m of degrees of

freedom. Writing

r N(0) 5 o
r,r8,s,s8

r N(0)rr8ss8 | r & ^ r8 | ^ | s & ^ s8 | 5 o
s,s8

ass8 ^ | s & ^ s8 | (83)

we can represent r N (0) by the matrix

1
a11 ? ? ? a1m

??? ??? ???
am1 ? ? ? amm 2 (84)

whose entries are elements of !. The (nonlinear) map f t
1 is said to be

completely positive if the matrix

1
f t

1(a11) ? ? ? f t
1(a1m)

??? ??? ???
f t

1(am1) ? ? ? f t
1(amm) 2 (85)
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is positive for any m. This is equivalent to the positivity of

f Ä t( r N(0)) 5 o
s,s8

f t
1(ass8) ^ | s & ^ s8 | (86)

However, for nonlinear f t
1 the explicit form of (86) for t . 0 is different for

differenet choices of bases { | s & }, which is unphysical unless there exists a

superselection rule distinguishing a particular basis. In the generic case no

such distinguished basis exists. Therefore a basis-independent extension from
one to more particles cannot have the forms (85) and (86). And, indeed, the

dynamics following from the Lie±Poisson extension discussed above does

not coincide with (86). This was shown by an explicit calculation in Czachor

and Kuna (1997b) but could be inferred also from the basis independence

of the N-particle extension. It must be stressed that the dynamics (86) is the
one that was used by Gisin (1989) in his discussion of unphysical influences

between separated systems.

10. NONLOCAL PROPERTIES OF N-PARTICLE EXTENSIONS
FOR THE DUAL POISSON STRUCTURE { ? , ? } 2 H

The regularity of the N-particle extensions typical of an almost-Lie±

Poisson dynamics is lost when one considers the dual Poisson structure

{ ? , S} 2 H with S a higher order Casimir invariant. To explicitly see the kind

of difficulties one may encounter, consider the two-particle equation

i r Ç a1a2 5 { r a1a2, C3/3} 2 H (87)

General properties of the 3-bracket dynamics imply that Cn( r Ã) are conserved

for any natural n, where r Ãis the two-particle density matrix. Also C1( r Ã(1))

is a constant of motion. However,

iCÇ 2( r Ã(1)) 5 2 Tr1([Tr2( r Ã2) Tr2( r Ã)]HÃ1) (88)

where the indices 1 and 2 correspond to the two subsystems and we have

assumed the standard two-particle extension of the (linear) Hamiltonian.

Although we do not have much control over the behavior of the eigenvalues
pj of the reduced density matrix r Ã(1), we can infer that ( j pj is constant,

whereas ( j p 2
j is in general time dependent. Let us note that average energies

of the two subsystems are separately conserved. This follows from the general

property of the 3-bracket: For H( r Ã) 5 H1( r Ã(1)) 1 H2( r Ã(2))

{H1( r Ã(1)), H ( r Ã), S ( r Ã)} 5 0 (89)

for any S (Czachor, 1997a). Therefore the probabilities pj can be made time

dependent without making the two subsystems interact with each other and
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without changing energies of the subsystems, just by modifying the overall

entropy of the composite system. So the change of entropy, say, by C2 ®
C2 1 e C3 at the global level, leads to the modification of the local subsystems.
Such a modification will not occur if

[Tr2( r Ã2), Tr2( r Ã)] 5 0 (90)

which holds for a pure-state r Ã, or r Ã5 r Ã(1) ^ r Ã(2). Still, strong correlations

can also help since reduced density matrices occurring in a singlet state are

proportional to unit matrices and the commutator vanishes. Systems described

by entropies other than C2/2 possess some kind of overall identity which is

lost when it is physically meaningful to discuss their subsystems separately.
This effect deserves a name. The fact that the subsystems ª feelº that the total

entropy (information) undegoes a change from C2 to C2 1 e C3 although

apparently ª nothing happenedº (no energy has been transfered between the

neighboring subsystems) resembles the influence that Big Brother in G.

Orwell’ s 1984 exerted on the inhabitants of Oceania ª just by watching them.º

It is not immediatly clear that the ª Big Brother effectº is entirely unphysi-
cal. Its interpretation is obscured by our lack of understanding of the physical

role played by the entropies Cn in the multiple-bracket scheme. It may be

relevant to mention that C2 is characteristic of the ReÂnyi 2-entropy, which

is the only a -entropy that characterizes a system whose gain of information

is zero for all probability distributions. The analysis of this problem was

given by ReÂnyi (1960). Although this is the first paper where the notion of
a -entropies was introduced, it does not seem to be known to the majority of

experts in quantum mechanical information theory. The work typically quoted

in the literature is ReÂnyi (1961), where ReÂnyi already departed from the natural

definition of the information gain in favor of a ª decrease of uncertainty.º This

latter modification was motivated by the problem with the vanishing gain
for a 5 2.

A class of physical systems whose identity as a whole is associated with

the way their entropy (or information) behaves are living organisms. Similarly,

statistical properties of societies have dynamical properties strongly

depending on information, and their dynamics cannot be regarded as a simple

sum of individual activities. The fact that a possibility of gaining information
can be formally related, via S, to nonlinearity of evolution resembles a similar

phenomenon mentioned by Wigner (1967) in the context of the measurement

problem (ª paradox of a friendº ). Whether such phenomena are in any way

related to the 3-bracket dynamics is at the moment a matter of pure speculation.

11. QUANTIZATION OF CLASSICAL NAMBU DYNAMICS?

The (2n 1 1)-bracket can be regarded as a nonlinear quantization of a

classical (n 1 1)-bracket with n classical Hamiltonian functions H1, . . . ,
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Hn. Indeed, the Liouville±von Neumann equation is characterized by one
Hamiltonian operator HÃ1, obtained by a quantization of a classical Hamiltonian

function H1. The requirement of linearity of evolution combined with the 3-
bracket dynamics leads to the choice of S 5 C2/2. Having n Hamiltonian

functions Hk , we can obtain n Hamiltonian operators HÃk after some quantiza-

tion procedure (say, p ® 2 i " ¹ x , etc.). Representing the operators by kernels

H ak
k , k 5 1, . . . , n, we can consider the (2n 1 1)-bracket equation

r Ç a 5 z2n 1 1 V aa1 . . . anb1. . . bn H a1
1 . . . H an

n
d S1

d r b1

. . .
d Sn

d r bn

(91)

For n . 1 the equation is always nonlinear and its RHS vanishes on pure
states. A self-adjoint Hilbert±Schmidt solution of the ª quantized Nambu

dynamicsº may be interpreted as a density matrix because the spectrum of

the solution is conserved. Had we started with the linear equation, which

could be obtained by taking the (n 1 2)-bracket

r Ç a 5 zn 1 2 V aa1 . . . anan 1 1 H a1
1 . . . H an

n r an 1 1 (92)

we would have obtained a dynamics which would not, in general, conserve

Tr ( r Ãm) for m . 1 and there would be no guarantee that positivity of r Ã
is conserved.

This kind of nonlinear quantization differs from the procedure discussed
in Takhtajan (1994), which was based on an n-bracket obtained by an antisym-

metrization of a product of n oparators, or the Zariski product quantization

proposed in Ditto et al. (1997). Also, all operator expressions involving an

odd number of operator kernels, if described within our approach, must

be excluded because the ª metricº tensor used for the generalized structure

constants would have to have an even number of indices, but such structure
constants vanish (the 3-bracket involves antisymmetrization of two operators,

the 5-bracket antisymmetrizes four operators, etc.). The quantization proposed

originally by Nambu (1973) (cf. Garcia Sucre and KaÂlnay, 1975) is therefore

also not equivalent to our formulation.

12. WHAT NEXT?

The formalism presented in this work is at a very preliminary stage of

development. The main problem is how to solve the nonlinear density matrix

equtions and how to extend the approach to a fully relativistic theory. Both
questions are highly nontrivial. The equations of the form i r Ç 5 [HÃ, r n] bear

some formal similarity to the Nahm equations studied in the SU(2) monopole

theory (Hitchin, 1983). Some recently developed techniques of solving matrix

equations by a noncommutative version of a Darboux transform (Leble and
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Zaitsev, 1997; Leble, 1997) may prove useful in this context. A natural

candidate for a relativistic multiple-bracket formalism is the off-shell proper-

time formulation. Some preliminary indefinite-metric results can be found
in Czachor and Kuna (1997a), and work on positive-metric generalization

of the Bargmann±Wigner off-shell equations (Czachor, 1997c) is in progress.

The characteristic function off-shell approach developed recently by Naudts

(1998) seems especially suited for this kind of generalization. A separate

problem is the behavior of eigenvalues of reduced density matrices in the

{ ? , ? } 2 H scheme. These eigenvalues are in general time dependent and
therefore the question of their interpretation is still unclear.

Note added in proof:

Explicit solutions of the S 5 C3/3 Lie-Nambu equations, including an

analysis of the ``Big Brother effect’ ’ , were obtained by the binary Darboux

technique in S. B. Leble and M. Czachor, ``Darboux-integrable nonlinear

von Neumann equation’ ’ , Physical Review E 58, 7091(1998). A relationship

of such equations to Tsallis-type nonextensive statistics was discussed in
M. Czachor and J. Naudts, ``Microscopic foundation of nonextensive

statistcs’’ , Physical Review E 59. (March 1999)Ð in print.
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